Pages - Menu

Basic Overview Of Alcohol Assessment

By Stacey Burt


In chemical called liqor to those organic chemical compounds containing a hydroxyl group (-OH) in replacing a hydrogen atom covalently bonded to a carbon atom. Besides this carbon must be saturated, ie must have only single bonds to two separate atoms, one that differentiates liqor-phenols. If containing several hydroxyl groups are called polyols (alcohol assessment).

The acidity of hydroxyl group is similar to that of water, although it depends mainly steric hindrance and the inductive effect. If a hydroxyl is bonded to a tertiary carbon, it is less acidic than if he were bound to a secondary carbon, and in turn it would be less acidic than if I was bound to a primary carbon, because steric hindrance prevents the molecule is effectively solvate. The inductive effect increases the acidity of liqor if the molecule has a large number of electronegative atoms attached to adjacent carbons (electronegative atoms help stabilize the negative charge of oxygen by electrostatic attraction).

The kit liqor can have various compositions. Ethyl liqor can be completely to 96 degrees, with an additive such as benzalkonium chloride or a substance to give an unpleasant taste. It is what is known as denatured ethyl liqor. Are also used as denaturants diethyl phthalate and methanol, which makes some toxic methylated spirits.

Other compositions: may contain isopropyl liqor, is unfit to drink, but may be more effective for use as a drying. In organic chemistry, an liqor is an organic compound having one of carbons (the latter being tetrahedral) is bonded to a hydroxyl group (-OH). Ethanol (or ethyl liqor) in composition of liqoric beverages is a special case of liqor, but all liqors are not suitable for consumption. In particular, methanol is toxic and lethal in high doses. When liqor is the main function, simply replace the terminal vowel "e" of corresponding alkane by the suffix -ol and indicate the number of carbon atom to which the hydroxyl is attached, although at times when it is not necessary to description, this information is omitted.

Alternatively the conversion can be directly carried out using thionyl chloride (SOCl2) chloride. An liqor can also be converted to bromoalkane using hydrobromic acid or phosphorus tribromide (PBr3) or iodoalkane using red phosphorus and iodine to generate "in situ" the phosphorus triiodide. Methanol: There are several methods for oxidizing methanol to formaldehyde and / or formic acid, as Adkins-Peterson reaction.

When liqor is substituent group, the hydroxy prefix is used. The diol, triol, etc. Suffixes are used, depending on the amount of OH groups. Monoliqors alkanes derivatives corresponding to general formula CnH2n plus 1OH. The liqors are typically colorless liquids with characteristic odor, soluble in water in varying proportions and less dense than it. By increasing the molecular weight, increase their melting and boiling points and may be solid at room temperature (ie the pentaerititrol melts at 260 degrees C). Unlike those derived alkanes, the hydroxyl functional group allows the molecule soluble in water due to similarity of hydroxyl group with the water molecule and allows hydrogen bonding.

The solubility of molecule depends on the size and shape of alkyl chain, because as the alkyl chain is longer and more voluminous, the molecule will tend to be more like a hydrocarbon molecule and less water, so be higher solubility in apolar solvents and less polar solvents. Some liqors (mainly aromatic rings and polyhydric) have a higher density than water.

The liqors can be produced by fermentation, including methanol from wood and ethanol from fruits and grains. The industry is resorted to only in case of ethanol to produce fuel and drinks. In other cases, liqors are synthesized from organic compounds from natural gas or oil in particular by hydration of alkenes.




About the Author:



0 comments:

Post a Comment