Pages - Menu

Useful Facts About Diffusion Coatings

By Marci Nielsen


the use and/or operation of metal components occurs in many different environments. The environments differ a lot and some of them cause significant effect on the metal. Effect may be caused by high temperatures or corrosive elements. Functionality, aesthetic value, and durability among other aspects get affected diversely by such adverse conditions. These effects led to research that led to the invention of diffusion coatings. These kinds of coatings are meant to offer protection to substrates against damage that results from environmental effects. This article will discuss the process and how protection is offered.

Diffusion coating is the process through which metal substrates are coated with diffusion coating. The process requires a special piece of equipment called a chamber and optimal temperatures are usually very high. Thorough cleaning of substrate must be done first before the process is started. Abrasive blasting is the most commonly used method although other methods can be used. Unwanted materials must be removed because they prevent complete bonding between the metal and substrate.

After being properly cleaned, the substrate is placed in a special container, which is placed inside a furnace in turn. The furnace is sometimes called a chamber. The furnace operates at very high temperatures, which range between 380-425 degrees.

At those temperatures, the diffusion of the metal occurs, which allows it to form an alloy with the substrate or component. This process lasts variable amounts of time depending on the metal used and the nature of the substrate. Typically, it lasts between two to four hours. During the entire time, the component is rotated slowly for a uniform coating to form.

When the process is finished, the coating that results is usually smooth and has a uniform thickness. The thickness can be varied depending on the purpose the components is meant to do. However, typical thicknesses are between 15 to 80 micrometers. The coating takes the color of the metal used and common ones include chromium, silicon, aluminum, and iron. Various materials can also be coated including nickel, steels, cobalt, and iron among many others.

The coating is resistant to erosion, oxidation, and reaction with air, water, and other substances. A lot of reliability, durability, and strength is achieved in components that are needed in critical functions. Pump impellers, power generation constituents, gave valves, and components or gas turbines engine like vanes, blades, and cases are examples of parts that usually get coated through this method.

The process is used mostly in industrial settings and few household equipment have components that are coated this way. The technology was invented several years ago and has been undergoing a lot of modifications aimed at perfecting it. Currently, there are better methods and technology for doing it.

Modern day furnaces are very efficient and have improved functionality because they incorporate several features. The coatings achieved today are thin yet very durable, strong, and efficient at avoiding corrosion. This technology is highly employed in the automotive industry.




About the Author:



0 comments:

Post a Comment